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Abstract. Relativistic Gamow vectors emerge naturally in a time asymmetric quantum theory as the
covariant kets associated to the resonance pole s = sR in the second sheet of the analytically continued
S-matrix. They are eigenkets of the self-adjoint mass operator with complex eigenvalue

√
sR and have

exponential time evolution with lifetime τ = −�/2Im
√
sR. If one requires that the resonance width Γ

(defined by the Breit-Wigner lineshape) and the resonance lifetime τ always and exactly fulfill the relation
Γ = �/τ , then one is lead to the following parameterization of sR in terms of resonance mass MR and
width ΓR: sR = (MR − iΓ/2)2. Applying this result to the Z-boson implies that MR ≈ MZ − 26MeV and
ΓR ≈ ΓZ − 1.2MeV are the mass and width of the Z-boson and not the particle data values (MZ , ΓZ) or
any other parameterization of the Z-boson lineshape. Furthermore, the transformation properties of these
Gamow kets show that they furnish an irreducible representation of the causal Poincaré semigroup, defined
as a semi-direct product of the homogeneous Lorentz group with the semigroup of space-time translations
into the forward light cone. Much like Wigner’s unitary irreducible representations of the Poincaré group
which describe stable particles, these irreducible semigroup representations can be characterized by the
spin-mass values (j, sR = (MR − iΓ/2)2).

1 Introduction and motivation

The meaning of unstable elementary particles and/or res-
onances – in particular in the relativistic domain – has
always been a subject of controversy and debates which
flare-up whenever new phenomena compel us to re-ex-
amine our old ideas and prejudices. Recently it was the
line shape of the Z-boson in the analyses of the LEP and
SLC data of eē → ff̄(+nγ) that gave rise to the revision
of old ideas. Two different approaches have been used in
the determination of the line shape and the definition of
the line shape parameters [1,2]. The first and popular ap-
proach, which practically all experimental analyses of the
LEP and SLC data follow [3], is based on the on-shell def-
inition of mass MZ and width ΓZ . Mass and width are
defined in perturbation theory by the self-energy of the
Z-boson propagator. The on-shell definition of mass and
width defines the (real) massMZ as the renormalized mass
in the on-shell renormalization scheme by the real part of
the self-energy. This choice of MZ as the mass of the Z
is arbitrary. The s-dependent width ΓZ(s) (which is not a
parameter of the standard model but a derived quantity)
is given by the imaginary part of the self-energy in terms
of the parameters of the standard model and MZ , and
thus suffers from the same degree of arbitrariness. In this
on-shell approach, the (radiation corrected) cross sections
around the Z peak are fitted to a Breit-Wigner amplitude
with energy dependent width given by

aj(s) = −
√

s
√
Γe(s)Γf (s)

s −M2
Z + i

√
sΓZ(s)

≈ RZ

s −M2
Z + i s

MZ
ΓZ

, (1)

where for the Z boson propagator (neglecting the Fermion
mass)

√
sΓZ(s) =

s
MZ

ΓZ and RZ ≡√ΓeΓf
s

MZ
(2)

have been used.
Once the arbitrariness of the on-shell renormalization

scheme [4–7] and its problems with gauge invariance of
MZ and ΓZ [8,9] were realized, a second approach to
the Z-boson line shape was suggested. This was based
on the S-matrix definition of the mass and width for an
unstable particle with spin j by the pole position sR =
(MR − iΓR/2)

2 of the resonance pole on the second sheet
of the j-th partial S-matrix element (or equivalently the
position sR of the propagator pole). With this definition,
the j-th partial amplitude for the Z-boson is again given
by a Breit-Wigner amplitude

aj(s) =
RZ

s − (MR − iΓR

2

)2 =
RZ

s − sR
, −∞II < s < +∞ .

(3)
Since the S-matrix pole is in the second Riemann sheet the
values of s should presumably also extend over the entire
real axis in the second sheet. This makes a difference not
for the physical (positive) values of s along the cut but
only for the negative values as indicated by −∞II in (3).
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Usually the range of s is not stated and may often be
presumed to extend over the values along the cut only,
s0 = (me +mē)2 < s < ∞, but it will turn out below that
s should range as stated in (3). The width Γ and massMR

are now the fixed basic S-matrix parameters, independent
of the energy s or a particular renormalization scheme.
According to the results of [5–7] the two definitions differ
in value by an amount exceeding the experimental error:

MR ≈ MZ − 26 MeV , Γ ≈ ΓZ(s = M2
Z) − 1.2 MeV .

(4)
There are other channels in addition to the Z-channel

to which the initial and final state of the LEP experiment
can couple, e.g., the photon channel and additional chan-
nels of which the phase shifts are assumed non-resonant.
This means we have a double multichannel resonance [10]
with background

eē → Z

γ
→ ff̄ + nγ . (5)

The partial wave amplitude is a superposition of the Z-
boson Breit-Wigner (3), the “γ-Breit-Wigner” and a
slowly varying background amplitude B(s) (constant in
the Z energy region):

aj(s) =
RZ

s − sR
+
Rγ

s
+B(s) . (6)

With the amplitude (6), the S-matrix approach and
the Standard Model (on-shell) approach, (using in place of
(3) the expression (1) for the Z-boson propagator in (6)),
led to similar formulas for the total cross section and the
asymmetries, except for the energy independence of the
width Γ in the S-matrix approach [1]. These formulas in
both approaches contain the Z-Breit-Wigner, the photon
term (“γ-Breit-Wigner”) and the Z − γ interference term
which is important for the fits of various asymmetries.
Fits of these formulas for the two different approaches
to the experimental cross sections and asymmetries were
equally good. They led to equally accurate fitted values
for mass and width in both approaches, which differed by
the expected mass shift (4) [1,11–13]. The experimental
data for the Z-boson can not discriminate between the
two different definitions of the Z-mass and width.

Though the phenomenological ansatz can be justified
in both approaches, theoretically, the on-shell definition of
the Standard Model [14] and the pole definition of the S-
matrix theory [15] are worlds apart. In the latter case, the
resonance is an elementary particle characterized (in ad-
dition to its spin j (and internal or channel or resonance
species quantum numbers)) by the complex number sR,
and differs from the corresponding definition of a stable
particle (bound state pole) just by a non-zero complex
part [15]. In the former case, the resonance is a compli-
cated phenomenon which cannot be defined by a number,
real or complex. Theoretically, the S-matrix definition has
the advantage of gauge invariance and there does not seem
to be a consensus whether the on-shell definition of MZ

can be gauge invariant. But, besides the on-shell renormal-
ization scheme, there are other renormalization schemes,

including the one based on the complex valued position of
the propagator pole, and many more different ones which
lead to gauge invariant (M

′
Z , Γ

′
Z)’s [16].

The definition of resonance mass and width in (pertur-
bation theory of) the Standard Model remains ambiguous
unless some further stipulations are added. Therefore, af-
ter the above reviewed developments, the popular opinion
appears to have changed in favor of the S-matrix defini-
tion of M and Γ . However, even for the S-matrix defini-
tion by the complex number sR =

(
MR − iΓR

2

)2
, the mass

and width of the Z resonance are not uniquely defined [2].
Conventionally and equivalently one often writes

sR ≡ M̄2
Z − iM̄Z Γ̄Z = M2

R

(
1 − 1

4

(
ΓR
MR

)2
)

− iMRΓR

(7)

and calls M̄Z = MR

√
1 − 1

4

(
ΓR

MR

)2
the resonance mass

and Γ̄Z = ΓR

(
1 − 1

4

(
ΓR

MR

)2
)−1/2

its width [3].

The insight acquired from the investigation of the line
shape problems of the Z-boson influenced the ideas about
hadron resonances [17]. The conventional approach [3] for
hadron resonances has also been to parameterize the am-
plitude in terms of a Breit-Wigner (1) with energy de-
pendent width Γh(s) (which is not as simple as (2) but
depends upon the model used for the energy dependence
and the definition of Mh). However there has been an
ongoing “pole-emic” in favor of the S-matrix pole defi-
nition of hadron resonances [18] and the recent editions
of [3] list for the baryon resonances like the ∆33 the val-
ues of the conventional parameters Mh(= 1232MeVfor∆)
and Γ (Mh)(= 120MeVfor∆) as well as the pole position
sh
(
=
(
1210 − i 1002

)
MeV

)
1. When both approaches, the

conventional one based on (1) and the S-matrix approach
based on (3), were applied to the ρ-meson data [17,19] and
compared with each other, the conclusion was that the S-
matrix definition of mρ and Γρ is phenomenologically pre-
ferred. The reason given was that these fitted parameters
remained largely independent of the parameterization of
the background term B(s) and the ρ − ω interference. A
similar fit to the S-matrix Breit-Wigner (3) was performed
for the experimental data on πp scattering in the ∆ reso-
nance region [20]. Again the fitted values for the pole defi-
nition (3) ofMR and Γ are independent of the background
parameterization and significantly smaller than the con-
ventional values from (1). The interpretation of [18] is that
the pole position sh belongs to the ∆-resonance whereas
the conventional parameters

(
Mh, Γ (M2

h)
)
belong to the

∆ together with a large background.
We will give in this paper a definition which com-

pletely fixes the ambiguity of the mass and width defi-
nition of a relativistic resonance or quasistationary ele-
mentary particle. This definition is based on the require-
ment that the width Γ in the Breit-Wigner energy dis-

1 Though they still call the Breit-Wigner with energy de-
pendent width (1) the “better form” than the Breit-Wigner
(3) given by the pole
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tribution should always be exactly equal to the inverse
lifetime τ of the exponential decay law, i.e., Γ = �/τ .
In ordinary quantum mechanics (Hilbert space theory),
τ cannot even be defined properly, because Hilbert space
mathematics does not allow the exponential law for any
state evolving by a self-adjoint Hamiltonian H [21] with
a semi-bounded spectrum. Fermi [22] extended the in-
tegration over the energy (frequency in his case) from
the lower bound (E = E0 ≡ me + mē in the present
case) to E = −∞. With this assumption for the en-
ergy range, these Hilbert space problems are overcome
and the Breit-Wigner (E − (ER − iΓ/2))−1 as well as (3)
above can be related to the exponential e−iERte−ΓRt by
a Fourier transformation (but for t > 0 only). This is
done in many elementary textbooks (see e.g., (5.118) of
[23]). Though numerically the difference between (3) for
(me + mē)2 ≤ s < +∞ and for −∞ < s < +∞ is
small for small values of Γ/MR (≈ 10−2 · · · 10−15) just
extending E (or s) to −∞ will violate the stability of
matter condition which requires that the Hilbert space
be L2(RE−E0>0). However, the pole at sR is in the second
Riemann sheet of the S-matrix, and if we take for s of
(3) the values −∞II < s < +∞ in the second sheet we
have avoided the conflict between Fermi’s assumption and
the semi-boundedness of the energy spectrum. This, how-
ever, means that one has to go beyond the Hilbert space
L2(RE−E0>0). The vector with the energy distribution of
(3), the Gamow ket ψG (see (18) below), is a functional
like the Dirac ket of the Lippmann-Schwinger equation
|E−〉 and requires the Rigged Hilbert Space. The “ideal”
(that means extended to s → −∞II) Breit-Wigner in (3)
and the “ideal” exponential e−Γt (that means t restricted
to t > 0) are exact manifestations of the resonance or qua-
sistable particle state, and the Γ of the exact exponential
law e−Γt/� = e−t/τ is now precisely the same as the ΓR in
the exact Breit-Wigner (3). This is a different idealization
from von Neumann’s idealization in the (complete) Hilbert
space where the time dependence of the decay rate can be
approximately exponential for “intermediate” times [21]
only and where the Breit-Wigner energy distribution can
only be an approximation2. The widely accepted width-
lifetime relation can in ordinary quantum mechanics only
be an approximate relation Γ ≈ �/τ between approxi-
mately defined quantities Γ and τ and has only been jus-
tified [24] as a (Weisskopf-Wigner [25]) approximation.

The Rigged Hilbert Space idealization fixes Γ precisely
as ΓR of (3) and (7) because only ΓR = −2 Im

√
sR (and

not Γ̄Z of (7) or ΓZ of (1) or any other Γ ′
Z) fulfills ΓR =

�/τ and then it fixes the definition of the resonance mass
as MR = Re

√
sR. With the Breit-Wigner (3) as the ideal

line shape of a relativistic resonance the location of the
pole sR could in principle be extracted precisely from the
experimental data.

The problem in all these experimental analyses is to
isolate the resonance from the background B(s) and from
other resonance terms of (6). This is a practical prob-
lem due to the initial and final state photonic corrections

2 The exact Breit-Wigner cannot be in the domain of the
Hamiltonian

and the apparatus resolution, but it is also a problem
of principle because even the unfolded “basic cross sec-
tions σ0” may contain interference with some background.
One can make the argument that in principle an unstable
microphysical state cannot be isolated by a macroscopic
apparatus. The prepared in-state φ+ is a superposition
(at ideal) of a resonance state ψG and a background φbg:
φ+ = ψG+φbg [26]. The resonance state ψG is elementary
and characterized, in addition to the spin jR, by a com-
plex square mass, sR = (MR − iΓR/2)

2, ψG = ψG
jRsR

, in
the same way as the stable state is characterized by spin j
and real mass-squared m2, ψjm, and the vector φbg repre-
sents the non-resonant part and is something complicated
that changes with φ+ from experiment to experiment. In
the scattering amplitude it is represented by B(s). This in-
troduces an ambiguity in the analysis of the experimental
data that allows for other theoretical definitions of mass
and width. But from this one should not conclude that
mass and width of a resonance are defined as technical
parameters only which could change with the renormal-
ization scheme. Spin and mass have a fundamental mean-
ing for stable relativistic particles and there is no reason
that spin, mass and lifetime should not also have a funda-
mental meaning for quasistable relativistic particles, even
though it is only defined by an idealization, as long as it
is the “right” idealization.

For stable elementary particles we have a vector space
description defined by the irreducible representation
spaces of the Poincaré group P [27] (from which one then
can construct fields [28]). This definition has so far no
counterpart for the unstable relativistic particles.

In order to consider an unstable particle such as the Z-
boson as a fundamental elementary particle in the Wigner
sense, we want to consider in this paper a class of repre-
sentations of the Poincaré group characterized by a com-
plex eigenvalue MR − iΓ/2 of the invariant mass operator
M = (PµPµ)1/2, where MR is the mass of the unsta-
ble particle and Γ , its width. The state vectors of the
unstable particle are by definition elements of a repre-
sentation space of the Poincaré group P. These repre-
sentations of P are “minimally complex” in which the
Lorentz subgroup is unitary. They are characterized by the
numbers (j, sR) where j is an integer or half integer and
sR = (MR − iΓR/2)

2 is a complex number with MR > 0
and ΓR > 03. The limit case Γ = 0 are the unitary irre-
ducible representations of Wigner (j,MR) describing the
stable elementary particle with spin j and mass MR.

This definition by the representation
(
j,MR − iΓR

2

)
of

the space-time symmetry group P is intimately connected
with the second definition by the pole of the j-th partial
S-matrix element at s = sR. In fact we will define ψG

jsR
’s

as the eigenkets of the self-adjoint, invariant square mass
operator PµP

µ with generalized complex eigenvalue sR
which are connected with the S-matrix pole at s = sR.
We will call these vectors relativistic Gamow kets.

3 There are corresponding representations for sR =
(MR + iΓR/2)2 MR, ΓR > 0
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This definition will therefore have features that are
the same as those of the pole definition. In particular,
the invariant energy wave function (as a function of s)
for the resonance state ψG

jsR
will be the Breit-Wigner am-

plitude (3) (i.e., 〈−sj|ψG
jsR

〉 ∼ aj(s) of (3)). This means

the s-distribution
∣∣〈−sj|ψG

jsR
〉∣∣2 of the resonance state vec-

tor ψG
jsR

is a Breit-Wigner with maximum at s = M̄2
Z =

M2
R

(
1 − 1

4

(
ΓR

MR

)2
)

and full width at half maximum

2MRΓR = 2M̄Z Γ̄Z . Usually one calls M̄Z the mass of
the relativistic resonance and Γ̄Z its width [3]. Since the
experiment always prepares φ+ = ψG + φbg, i.e., reso-
nance state with a background, the s-distribution of the
(corrected) cross-sections σ0

j are given by the modulus
of something like (6) with an undetermined background
B(s). This makes it difficult to determine the parameters
MR ΓR accurately. In addition the complex pole position
sR by itself does not define mass and width separately.
Therefore a more specific definition is needed that distin-
guishes between the different M ’s and Γ ’s. This is the
definition by the Gamow vector ψG

jsR
, that has features in

terms of which another definition of the quantity Γ can be
given. These features are the decay probability P(t), the
total decay rate Ṗ(t), and the partial decay rates Ṗη(t),
and their exponential laws which defines the lifetime τ .
The time dependence of P(t), Ṗ(t) and Ṗη(t) follow from
the time evolution of the decaying state ψG

j,MR−iΓ/2 [29],
whose time evolution, if exponential, could therefore pro-
vide another definition of Γ by demanding that Γ ≡ �

τ .
These features were not discussed in connection with

the Z-boson and hadron resonances, because for their val-
ues of Γ/M they are not observable. The decay rate and
the partial decay rates as functions of time are the main fo-
cus of experimental investigations for other unstable par-
ticles with Γ/MR ≈ 10−14, like the K0 [30]. Though in
the phenomenological treatment [30,31] of decaying state
vectors one is not much concerned with questions of the
relativistic definition or the exponential decay law or the
line width, it would be still very satisfying if there is a
precise vector space description based on the representa-
tion (j, sR) of the relativistic space-time symmetry group
P which is compatible with the S-matrix pole definition of
a relativistic resonance, and has all the desired features of
a relativistic quasistable particle. The definition of a rel-
ativistic resonance or unstable particle by ψG

jsR
gives the

meaning of a fundamental relativistic particle to the Z-
boson, which can be considered as isolated from its back-
ground φbg. To what extent such an idealized ket-state
can be experimentally prepared is a different question.
The accuracy with which the exponential law has been
observed in some cases [32] shows that the isolation of
the microphysical state ψG from a background φbg can be
very good.

In the remainder of this paper we discuss the math-
ematical formulation of the rigged Hilbert space quan-
tum mechanics and the state vector representation of reso-
nances and quasi-stable particles. The above phenomeno-

logical analysis of the Z-boson and other resonaces is fur-
ther developed in [33].

2 From the non-relativistic
to the relativistic Gamow ket

Gamow kets ψG = |z−
R〉√2πΓ , zR = ER−iΓ/2, were intro-

duced in non-relativistic quantum mechanics two decades
ago [34] in order to derive a Golden Rule for the time de-
pendent decay rates Ṗη(t) which at t = 0 goes into Dirac’s
Golden rule if one makes the following (Born) approxima-
tion

〈E|V |ψG〉 ≈ 〈E|V |fD〉 ER ≈ ED ,
Γ

2ER
≈ 0 . (8)

Here ψG is the eigenket of the Hamiltonian with inter-
action H = H0 + V and fD is the eigenvector of the
unperturbed Hamiltonian H0

HψG = (ER − iΓ/2)ψG H0f
D = EDf

D . (9)

The Gamow kets are like Dirac-Lippmann-Schwinger kets
|E−〉, functionals of a Rigged Hilbert Space:

Φ+ ⊂ H ⊂ Φ×
+ : ψG = |z−

R〉
√
2πΓ ∈ Φ×

+, |E−〉 ∈ Φ×
+.
(10)

The generalized eigenvectors, |E±〉 = |E, b±〉 = |E, jj±
3 〉,

|z−
R〉 etc., of the self-adjoint (semi-bounded) energy oper-

ator H are mathematically defined by

〈Hψ|E−〉 ≡ 〈ψ|H×|E−〉
= E〈ψ|E−〉 for all ψ ∈ Φ+, (11a)

〈Hψ|z−
R〉 ≡ 〈ψ|H×|z−

R〉
= zR〈ψ|z−

R〉 for all ψ ∈ Φ+. (11b)

The labels b, which could be the angular momentum j , j3,
are the degeneracy quantum numbers which we shall omit
whenever possible. The difference between (11a) and (11b)
is that E for the Dirac-kets is the real scattering energy
and zR for the Gamow kets is the complex pole posi-
tion. The conjugate operator H× of the Hamiltonian H
is uniquely defined by the first equality in (11) as the ex-
tension of the Hilbert space adjoint operator H† to the
space of functionals Φ×

+
4 (i.e., on the space H, the opera-

tors H× and H† are the same). We shall write (11) also
in the Dirac way as

H×|E−〉 = E|E−〉 ; H×|z−
R〉 = (ER − iΓ/2)|z−

R〉 . (12)

The Dirac kets |E〉 in (8) are eigenkets of the unperturbed
Hamiltonian, H0|E〉 = E|E〉, and ED is a discrete point
embedded in the continuous spectrum 0 < E < ∞ of H0.

4 For (essentially) self-adjoint H, H† is equal to (the closure
of) H; but we shall use the definition (11b) also for unitary
operators U where U× is the extension of U†, and not of U
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In the quantum theory of scattering and decay, the pair
of so called in- and out- “states” |E+〉 and |E−〉, which
are solutions of the Lippmann-Schwinger equation,

|E±〉 = |E〉 + 1
E −H ± i0

V |E〉 = Ω±|E〉 , (13)

are well accepted quantities, though their mathematical
properties do not fit into the standard Hilbert space the-
ory. The modulus of the energy-wave function of the pre-
pared in-state φ+, |〈+E|φ+〉|2 = |〈E|φin〉|2, gives the en-
ergy distribution in the incident beam of a scattering ex-
periment, and the energy resolution of the observed out-
state ψ−, |〈−E|ψ−〉|2 = |〈E|ψout〉|2, describes (for perfect
efficiency) the energy resolution of the detector.

The sets {|E±〉} are the basis systems that is used for
the Dirac basis vector expansion of the in-states φ+ ∈ Φ−
and the out-states (observables) ψ− ∈ Φ+ of a scattering
experiment

ψ− =
∑
b

∫ ∞

0
dE|E, b−〉〈−E, b|ψ−〉

φ+ =
∑
b

∫ ∞

0
dE|E, b+〉〈+E, b|φ+〉 . (14)

where b are the degeneracy labels. If one also includes the
center-of-mass motion in the description of the states, then
b will also include the center-of-mass momentum. The
Dirac-Lippmann-Schwinger kets |E±〉 are in our Rigged
Hilbert Space quantum theory antilinear functionals on
the spaces Φ∓, i.e., they are elements of the dual spaces:
|E±〉 ∈ Φ×

∓ (see e.g., Sec. III of [35]).
This leads to two Rigged Hilbert Spaces for one and

the same Hilbert space H. The two Rigged Hilbert Spaces
allow us to formulate the following new hypothesis for our
quantum theory which will turn out to include asymmetric
time evolution:

The pure out-states {ψ−} of scattering theory, which
are actually observables as defined by the registra-
tion apparatus (detector) are vectors

ψ− ∈ Φ+ ⊂ H ⊂ Φ×
+ . (15a)

The pure in-states {φ+} which are prepared states
as defined by the preparation apparatus (accelera-
tor) are vectors

φ+ ∈ Φ− ⊂ H ⊂ Φ×
− . (15b)

This new hypothesis–with the appropriate choice for the
spaces Φ+ and Φ− given below in (17)–is essentially all
by which our quantum theory differs from the standard
Hilbert space quantum mechanics, which imposes the con-
dition {ψ−} = {φ+} = H (or {ψ−} = {φ+} ⊂ H). As
a consequence of this Hilbert space condition, the time
evolution generated by the self-adjoint Hamiltonian H̄
is a unitary (and therefore reversible) group evolution
U(t) = eiHt − ∞ < t < +∞.

The time evolution in the spaces Φ+ of (15a) generated
by the essentially self-adjoint Hamiltonian H+ (which is

the restriction of the self-adjoint (closed) H̄ to the dense
subspace Φ+) is not a unitary group, but only a semigroup
U+(t) = eiH+t, 0 ≤ t < ∞. The time evolution in Φ×

+ given
by (U+(t))

× = e−iH×
+ t (where the conjugate U× is defined

as in (11)) is consequently also only a semigroup 0 ≤ t <
∞. Similar statements hold for (15b) with −∞ < t ≤ 05.
This asymmetric time evolution is a consequence of the
time asymmetric boundary condition (15) and not a time
asymmetry of the dynamical equation, which is still the
Schroedinger or von Neumann differential equation. This
time asymmetry has always been tacitly contained in the
Lippmann-Schwinger integral equations without however
specifying the spaces Φ×

± of the solutions |E∓〉 and without
giving them an unequivocal physical interpretation as in
(15).

This quantum mechanical time asymmetry has been
discussed elsewhere [35] and has been mentioned here only
to elucidate the time evolution of the Gamow vectors men-
tioned below. The semigroup {U+(t)} is a restriction to
Φ+ of the unitary group {U(t)} in H and the semigroup
{U×

+ (t)} is an extension of the same unitary group {U†(t)}
to Φ×

+. It is important to record that the unitary group
U(t) in H is not an extension in the sense of Sz.-Nagy
of the semigroup U+(t) on Φ+ [36,37]. Φ+ is a complete
topological space but not a Hilbert space, and H is not an
extension of Φ+ as in Sz.-Nagy theory; rather, H results
as the completion of Φ+ with respect to the scalar product
norm5.

To obtain the non-relativistic Gamow kets one analyti-
cally continues the Dirac-Lippmann-Schwinger ket
|E, j, j±

3 〉 into the second sheet of the j-th partial S-matrix
to the position of the resonance pole zR. As in ordinary
scattering theory, one starts with the following S-matrix
elements (suppressing the degeneracy quantum numbers
j j3):

(ψout, φout)

= (ψout, Sφin) = (ψ−, φ+)

=
∫ +∞

0

∫ +∞

0
dEdE′〈ψout|E〉〈E|S|E′〉〈E′|φin〉

=
∫ +∞

0
dE〈−ψ|E−〉S(E + i0)〈+E|φ+〉 . (16)

In order to arrive at the pole position zR of S(E), we de-
form the contour of integration through the cut into the
lower half of the second sheet of the energy plane. This
is not possible for arbitrary elements ψ− and φ+ of the
Hilbert space, and so one has to assume certain analytic-
ity properties of the energy wave-functions 〈−E|ψ−〉 and
〈+E|φ+〉 that represent (“realize”) the vectors ψ−, φ+. At
this point the new Rigged Hilbert Space hypothesis (15)
comes into play: The vectors

φ+ ∈ Φ− with the physical interpretation of the in-state
prepared by the accelerator, and

5 It is important not to visualize the inclusions of Φ+ ⊂ H ⊂
Φ×

+ like the inclusion of the two-dimensional plane R2 in the
three-dimensional space R3 = R2 ⊕ R1, because it is more like
the inclusion of the rational numbers in the real numbers
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ψ− ∈ Φ+ with the physical interpretation of the observ-
able (decay products) registered by the detector,

are mathematically defined by the property of their en-
ergy wave functions 〈−E|ψ−〉 and 〈+E|φ+〉 of (14). Re-
spectively:

ψ− ∈ Φ+if and only if〈−E|ψ−〉 ∈ S ∩ H2
+|R+ , (17a)

φ+ ∈ Φ−if and only if〈+E|φ+〉 ∈ S ∩ H2
−|R+ . (17b)

where S ∩ H2
+|R+ are well-behaved Hardy class functions

[38] in the upper half plane and S ∩ H2
−|R+ are well-

behaved Hardy class functions in the lower half plane.
The notation |R+ means the restriction to the positive real
line, i.e., the physical values of energy, and S denotes the
Schwartz space. In contrast H is realized as the space of
Lebesgue square integrable functions L2[0,∞) = L2(R+).
Thus the new hypothesis (15) means that the energy wave
functions are not simply Lebesgue square integrable func-
tions6 as in ordinary quantum mechanics but are much
nicer functions that can be analytically continued into the
complex plane (lower half second sheet for 〈+E|φ+〉 and
〈ψ−|E−〉 and upper half second sheet for 〈−E|ψ−〉 and
〈φ+|E+〉) and vanish on the infinite semicircle sufficiently
fast. The precise mathematical definition [40] is not im-
portant here and it suffices to say that the functions of
(17) have all the properties needed to deform the contour
of integration (16) into the lower half plane second sheet
and to obtain, from the integral around the S-matrix pole
zR, the following representation of the Gamow vector:

|zR = ER−iΓ/2, jj3 −〉 = i

2π

∫ +∞

−∞II

dE|E, jj3 −〉 1
E − zR

.

(18)
This equation is understood as a fu Φ×

+. This means that
it is a relation between the function 〈ψ−|E, jj−

3 〉 of E and
its value 〈ψ−|zR, jj−

3 〉 at the complex position zR
7 for all

ψ− ∈ Φ+ (i.e., for observables ψ− only and not for in-
states φ+ ∈ Φ−). The integral is taken over all values of E
along the real axis in the second sheet right below the cut
from E0(= 0) to ∞, of which the values −∞ < EII < 0
are unphysical, but for which 〈ψ−|E−

II〉 = 〈ψ−|E−〉 for
the physical values of E along the upper edge of the cut
in the first sheet, 0 ≤ E < ∞. As a consequence of the
Hardy class property, 〈ψ−|z−〉 for any z in the lower half
plane is already determined by its values 〈ψ−|E−〉 on the
positive semi-axis, i.e., at physical values 0 ≤ E < ∞ for
which |〈ψ−|E−〉|2 is the detector resolution function. The

6 One can show [39] that the two triplets of function spaces

S ∩ H2
±|R+ ⊂ L2(R+) ⊂ (S ∩ H2

±|R+

)×

which “realize” the two triplets of abstract vector spaces (15),
are two Rigged Hilbert Spaces (also called Gelfand triplets) of
functions. The two Rigged Hilbert Spaces of the in-states {φ+}
and the out-states {ψ−} are mathematically defined as those
Rigged Hilbert Spaces whose realizations are the two Rigged
Hilbert Spaces of S ∩ H2

−|R+ and S ∩ H2
+|R+ respectively

7 This is Titchmarsh theorem for Hardy class functions
〈ψ−|E−〉 ∈ H2

−

representation (18) is the reason why we have a Breit-
Wigner 1

E−zR
that extends over −∞ < E < +∞, in spite

of the fact that the physical values (i.e., the spectrum of
the self-adjoint H) are bounded from below. The same
will hold for the relativistic Breit-Wigner in (3).

All the features described here for the non-relativistic
case carry over directly to the relativistic case if one re-
places the energy (in the center-of-mass frame) E by the
relativistic invariant mass square variable (Mandelstam
variable) s = E2 − p2 = (p1 + p2 + · · · + pn)2 where
p1 , p2 · · · are the momenta of the (two) decay products
R. The problem that remains to solve is what to do about
the momentum p which becomes complex when s is taken
to complex values.

The Gamow ket |zR, jj−
3 〉 as well as the Dirac-

Lippmann-Schwinger kets |E, jj−
3 〉 do not contain the

(trivial) center-of-mass motion, this E (and the exact
Hamiltonian H) does not include the center-of-mass en-
ergy p2

2m = Etot − E. To obtain the basis system for the
space of the center-of-mass plus relative motion in non-
relativistic physics one takes the direct product with the
eigenket |p〉 of the center-of-mass momentum P = P 1+P 2

|Ep, jj−
3 〉 = |p〉⊗ |E, jj−

3 〉 ; |zRp, jj−
3 〉 = |p〉⊗ |zR, jj−

3 〉
(19)

Since in the non-relativistic physics changing of p (Galilei
transformation into a moving frame) does not effect E
but only p2

2m , an analytic extension of E to complex val-
ues z does not lead to complex momenta. This is not
the case for Lorentz transformations. Complex values of
s = pµp

µ also means complex values of Etot = p0 and
pm ,m = 1, 2, 3 ; because Lorentz transformations inter-
mingle energy and momenta. In order to stay as closely as
possible to the non-relativistic case we will consider a spe-
cial class of “minimally complex” irreducible representa-
tions of P. Our construction will lead to complex momenta
pµ, but these momenta will be “minimally complex” in
such a way that the 4-velocities p̂µ ≡ pµ

m remain real. This
construction is motivated by a remark of D. Zwanziger [41]
and is based on the fact that the 4-velocity eigenvectors
|p̂j3(m, j)〉 furnish as valid a basis for the representation
space of P as the usual Wigner basis of momentum eigen-
vectors |pj3(m, j)〉. When used properly as basis vectors,
their introduction does not constitute an approximation.
The |p̂, j3〉 ∈ Φ× are the eigenkets of the 4-velocity op-
erators P̂µ = PµM

−1 and φj3(p̂) ≡ 〈j3p̂|φ〉 represents
the 4-velocity distribution of a state vector φ for a par-
ticle with spin j and mass m and therewith contains the
same information as the standard momentum distribution
〈p|φ〉. The 4-velocity eigenvectors are often more useful as
basis vectors than the momentum eigenvectors [42,43].

3 Relativistic Gamow vectors

Relativistic resonances occur in the scattering of relativis-
tic elementary particles, and relativistic quasistationary
states decay into two (or more) relativistic particles, e.g.,
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eē → R → ff̄ (f = e, µ). Relativistic resonances and de-
caying states are described in the direct product space of
two (or more) irreducible representations of the Poincaré
group [44,45]

H ≡ H(m1, 0) ⊗ H(m2, 0) =
∫ ∞

(m1+m2)2
ds

∞∑
j=0

⊕H(s, j) .

(20)
For simplicity, we have assumed here that there are two
decay products, R → f1 + f2 with spin zero, described by
the irreducible representation spaces Hfi(mi, ji = 0). The
direct sum resolution for the more general case involving
arbitrary spin j1 and j2 is treated in [46]. Since the rela-
tivistic Gamow vectors will be defined not as momentum
eigenvectors but as 4-velocity eigenvectors in the unitary
irreducible representation spaces of the direct product of
(20) one needs to use the basis vectors |p̂iji3(miji)〉 and
|p̂j3(wj)〉 with the normalization

〈p̂′j′
3(w

′j′)|p̂j3(wj)〉
= 2Ê(p̂)δ(p̂′ − p̂)δj′

3j3
δj′jδ(s − s′) (21)

where

Ê(p̂) =
√
1 + p̂2 =

1
w

√
w2 + p2 ≡ 1

w
E(p, w) ,

w =
√

s .

A relativistic resonance occurs in a particular partial wave
characterized by its spin value j. Therefore one cannot use
the direct product basis vectors

|p̂1p̂2[m1m2]〉 ≡ |p̂1(m10)〉 ⊗ |p̂2(m20)〉 (22)

but the basis in which the total angular momentum or
resonance spin j is diagonal. These are the kets |p̂j3(wj)〉
which are also eigenvectors of the 4-velocity operators

P̂µ = (P 1
µ +P 2

µ)M
−1, M2 = (P 1

µ +P 2
µ)(P

1µ+P 2µ) (23)

with eigenvalues

p̂µ =

(
Ê = p0

w =
√
1 + p̂2

p̂ = p
w

)
and w2 = s. (24)

In here P i
µ are the momentum operators in the one par-

ticle spaces Hfi(mi, si) with eigenvalues piµ = mip̂
i
µ. The

|p̂j3(wj)〉 are given in terms of the direct product basis
vectors (22) by

|p̂j3(wj)〉 (25)

=
∫

d3p̂1

2Ê1

d3p̂2

2Ê2
|p̂1p̂2[m1m2]〉〈p̂1p̂2[m1m2]|p̂j3(wj)〉

for any
(m1 +m2)2 ≤ w2 < ∞ j = 0, 1, . . .

where the Clebsch-Gordan coefficients 〈p̂1p̂2[m1,m2]|
p̂j3(wj)〉 are calculated by the same procedure as given in

the classic papers [44,45,47] for the Clebsch-Gordan co-
efficients 〈p1p2[m1m2]|pj3(wj)〉 for the Wigner (momen-
tum) basis vectors. This has been done in [46], to yield:

〈p̂1p̂2[m1,m2]|p̂j3(wj)〉
= 2Ê(p̂)δ3(p − r)δ(w − ε)Yjj3(e)µj(w

2,m2
1,m

2
2) (26)

with ε2 = r2 = (p1 + p2)2, r = p1 + p2,

The unit vector e in (26) is chosen to be in the center-of-
mass frame the direction of p̂cm

1 = −m2
m1

p̂cm
2 . The coeffi-

cient µj(w2,m2
1,m

2
2) fixes the δ-function “normalization”

of |p̂j3(wj)〉 and is for the normalization (21) given by

∣∣µj(w2,m2
1,m

2
2)
∣∣2 =

2m2
1m

2
2w

2√
λ(1, (m1

w )2, (m2
w )2)

(27)

where λ is defined by [47]

λ(a, b, c) = a2 + b2 + c2 − 2(ab+ bc+ ac). (28)

Since the direct product space (20) describes the states of
asymptotically free decay products, the basis vectors (25)
are the eigenvectors of the free Hamiltonian H0 = P 1

0 +P
2
0

H×
0 |p̂j3(wj)〉 = E|p̂j3(wj)〉, E = w

√
1 + p̂2. (29)

From these free states, the Dirac-Lippmann-Schwinger
scattering states involving interactions can be obtained,
in analogy to (13) (cf. also [28] Sec. 3.1) by:

|p̂j3(wj)±〉 = Ω±|p̂j3(wj)〉 (30)

where Ω± are the Møller operators. For the basis vectors
at rest, (30) is given by the solution of the Lippmann-
Schwinger equation

|0j3(wj)±〉 =
(
1 +

1
w −H ± iε

V

)
|0j3(wj)〉. (31)

The interacting states |0j3(wj)±〉 are eigenvectors of the
exact Hamiltonian H = H0 + V :

H×|0j3(wj)±〉 = √
s|0j3(wj)±〉, (m1 +m2)2 ≤ s < ∞.

(32)
For arbitrary velocities, the vectors |p̂j3(wj)±〉 are ob-
tained from the basis vectors at rest |0j3(wj)±〉 by the
boost (rotation-free Lorentz transformation) U(L(p̂))
whose parameters are the 4-velocities p̂µ. The generators
of the Lorentz transformations are the interaction-incor-
porating observables

P0 = H, Pm, Jµν . (33)

These exact generators of the Poincaré group are related
to the free generators of (20) by terms that describe the
interactions ([28], Sec. 3.3). For any fixed pair of values
[jw], the basis vectors |p̂j3(wj)±〉, or equivalently the
|0j3(wj)±〉 when boosted by U(L(p̂)), span a unitary ir-
reducible representation space of the Poincaré group with
the “exact generators” (33). The relativistic Gamow vec-
tor describing the unstable particle derives from these
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interaction-incorporating Lippmann-Schwinger kets |p̂j3
(wj)±〉.

As mentioned above, the unstable particle is that phys-
ical entity which gives rise to the simple pole at sR =
(MR − iΓR

2 )2 on the second sheet of the analytically ex-
tended partial wave S-matrix SjR

. Therefore, to obtain
the Gamow vectors, and therewith a state vector descrip-
tion of unstable particles, we seek to obtain the analytic
extensions of the Dirac-Lippmann-Schwinger kets (30) or
(31) to the location of the pole sR. This requirement im-
poses the condition that the wave functions of the in-states
φ+ ∈ Φ− and out-states ψ− ∈ Φ+ have the same analyt-
icity properties in the square mass variable as the energy
wave functions of the non-relativistic case synopsized by
(17), with the exception that mathematical rigor requires
that a closed subspace S̃ of the Schwartz space, developed
in [48], needs to be considered:

ψ− ∈ Φ+ if and only if

〈−p̂j3sj|ψ−〉 ∈
(
S̃ ∩ H2

+

)∣∣∣
R(m1+m2)2

φ+ ∈ Φ− if and only if

〈+p̂j3sj|φ+〉 ∈
(
S̃ ∩ H2

−
)∣∣∣

R(m1+m2)2

, (34)

where R(m1+m2)2 = [(m1 +m2)2,∞). The details of this
construction of S̃ will be given in a forthcoming paper. An-
other requirement for the validity of the analytic continu-
ation is that the s-contour of integration in the complete-
ness relation for (ψ−, φ+) with respect to the |p̂j3sj±〉
basis, namely

(ψ−, φ+) =
∑
jj3

∫
d3p̂
2p̂0

∫ ∞

(m1+m2)2
ds〈ψ−|p̂j3sj−〉

×Sj(s)〈p̂j3sj+|φ+〉 (35)

can be deformed into the second sheet of the jR-th partial
S-matrix element Sj(E). With these analyticity require-
ments, and in complete analogy to the non-relativistic case
(18), one deforms the s-contour of integration in (35) so
that the amplitude (ψ−, φ+) separates into a resonance
state associated with the pole at sR and a background
term. The pole term yields the kets

|p̂j3(sRjR)−〉 = i

2π

∫ +∞

−∞II

ds|p̂j3(sjR)−〉 1
s − sR

,

sR =
(
MR − i

ΓR
2

)2

(36)

with the Breit-Wigner s-distribution of (3) that extends
from −∞II < s < ∞. These are the relativistic Gamow
kets that we set out to construct.

The relativistic Gamow kets (36) are generalized eigen-
vectors of the invariant mass squared operator M2 =
PµP

µ with eigenvalue sR =
(
MR − iΓR

2

)2
〈ψ−|M2|p̂j3(sRjR)−〉

=
(
MR − i

ΓR
2

)2

〈ψ−|p̂j3(sRjR)−〉

for everyψ− ∈ Φ+ ⊂ H ⊂ Φ×
+. (37)

To prove (37) from (36) and also in order to obtain (36)
from the pole term of the S-matrix, one needs to use the
Hardy class properties (34) of the space Φ+ [34] and the
usual analyticity properties of the S-matrix elements [15].
The continuous linear combinations of the Gamow vec-
tors (36) with an arbitrary 4-velocity distribution function
φj3(p̂) ∈ S (Schwartz space),

ψG
jRsR

=
∑
j3

∫
d3p̂

2p̂0 |p̂j3(sR, jR)−〉φjR
(p̂), (38)

represent the velocity wave-packets of the unstable parti-
cles. As an immediate consequence of the integral resolu-
tion (36), they also have a Breit-Wigner distribution 1

s−sR

in the square mass variable that extends over −∞II < s <
+∞ as given in (3).

In the vector space spanned by the Gamow kets
|p̂j3(sRjR)−〉, the Lorentz transformations U(Λ) are rep-
resented unitarily:

U(Λ)|p̂j3(sRjR)−〉 =
∑
j′
3

DjR

j′
3j3

(R(Λ, p̂))|Λp̂j′
3(sRjR)

−〉,

(39)
where R(Λ, p̂) = L−1(Λp̂)ΛL(p̂) is the Wigner rotation.
In particular for the rotation free Lorentz boost L(p̂) we
have

U(L(p̂))|p̂ = 0, j3(sRjR)−〉 = |p̂j3(sRjR)−〉. (40)

It is important to remark here that the complexness of the
Poincaré invariant PµPµ =

(
sR − iΓR

2

)2
(37), or equiva-

lently that of the momenta pµ =
(
sR − iΓR

2

)
p̂µ, does not

upset the unitarity of the U(Λ). The crucial observation is
that the parameters of the homogeneous Lorentz transfor-
mations (40) are not the momenta pµ, but the 4-velocities
p̂µ = pµ

w , since the boost matrix L is given by

Lµ
ν =


 p0

w −pn

w

pk

w δkn−
pk

w
pn
w

1+ p0
w


 , L(p̂)




1
0
0
0


 = p̂. (41)

We choose these parameters p̂µ real and they remain real
under general Lorentz transformations which are prod-
ucts of boosts and ordinary rotations. The complexness of
the momenta is solely due to complexness of the invariant
mass w =

√
sR.

The analyticity and smoothness properties (34) needed
for the construction of the Rigged Hilbert Space theory of
non-relativistic Gamow vectors further infer that the time
translation of the decaying state is given by a semigroup.
For instance, the rest state vectors of the quasistable par-
ticle transforms as

e−iH×t|p̂ = 0, j3(sRjR)−〉
= e−imRte−ΓRt/2|p̂ = 0, j3(sRjR)−〉 fort ≥ 0 only (42)



A. Bohm et al.: Time asymmetric quantum theory and the ambiguity of the Z-boson mass and width 341

where t is time in the rest system. This is the required
exponential time evolution which assures the validity of
the exact exponential law for the partial and total decay
rates

Ṗ(t) =
d

dt
P(t) =

ΓR
�
e−ΓRt/� ;

Ṗη(t) =
ΓRη

�
e−ΓRt/� ; t ≥ 0 , (43)

where ΓR is exactly the imaginary part of the generalized
eigenvalue of the mass operator M for the Gamow kets in
(37) which in turn according to (36) is exactly −2Im

√
sR

of the pole position sR in the “ideal” Breit-Wigner (3).
The relativistic Gamow vector is the theoretical link that
connects the ideal relativistic Breit-Wigner energy distri-
bution of the second sheet S-matrix pole (3) to the exact
exponential decay law (43) and justifies the lifetime-width
relation τ = �

ΓR
as a precise equality.

4 Conclusion

We have constructed the relativistic Gamow vector in
analogy to the non-relativistic Gamow vector which had
been defined some time ago in the framework of time
asymmetric quantum mechanics in Rigged Hilbert Spaces.
Gamow vectors have all the properties needed to represent
quasistable states and resonances. They are associated to
resonance poles of the S-matrix, have a Breit-Wigner en-
ergy distribution which for the relativistic Gamow vector
is given by (36) leading to the scattering amplitude (3),
and have an exact exponential time evolution (42) guar-
anteeing the exponential law (43). Then the connection
between the width ΓR measured by (3) and the lifetime
τ = �

ΓR
measured by the exponential law (43) holds ex-

actly. This relation τ = �

Γ cannot be obtained from (1)
for Γ = ΓZ since the definition of the Gamow vectors
(36) requires the denominator of (3). It is quite unlikely
that a state vector (or state operator) can be associated
to (1) since the Hardy class Rigged Hilbert Spaces (34),
from which the Gamow vector (36) is derived, have a very
special and tight mathematical structure.

If one wants this lifetime-width relation, τ = �

Γ , to
hold universally and exactly, then Γ must be the ΓR de-
fined by (3) and not the more commonly used Γ̄Z of (7)
nor the standard ΓZ of (1). The “resonance mass” is then
given from the inverse lifetime ΓR and the S-matrix pole
position sR as Re

√
sR = MR which differs from the stan-

dard MZ ≈ MR + 26MeV and from M̄Z ≈ MR + 8MeV.
Defining the relativistic resonance and quasistable rel-

ativistic particle by the Gamow vector puts the qua-
sistable and stable elementary particles on a more equal
footing. Stable elementary particles are defined by irre-
ducible unitary representation (j,m2) spaces of the
Poincaré group P [27]. The Dirac-Lippmann-Schwinger
kets |p̂j3(sj)−〉 in (30) are basis vectors of an irreducible
unitary representation (j, s) of P [28]. The Gamow kets
|p̂j3(sRj)−〉 take this just one small step further because

they are obtained from the “out-states” |p̂j3(sj)−〉 by an-
alytic continuation to the S-matrix pole position sR. The
Gamow kets |p̂j3(sRj)−〉 are also a basis system of a rep-
resentation (j, sR) of Poincaré transformations. But these
transformations form only the semigroup of the Poincaré
transformations into the forward light cone P+, of which
the time translations at rest for t > 0, (42), are special
examples. The representations (j, sR) =

(
j,MR − iΓR

2

)
of

P+ are “minimally complex” representations in which the
Lorentz subgroup is unitary. They are characterized by the
integer or half-integer j and by MR > 0 and ΓR > 0. The
limit case ΓR = 0 are the unitary irreducible representa-
tion of Wigner (j,MR) describing the stable elementary
particle with spin j and mass MR, and thus quasistable
and stable particles are just special cases of representa-
tions of Poincaré transformations8.

The relativistic Gamow vectors unify stable and qua-
sistable relativistic particles; the Z-boson now becomes
a fundamental particle in the sense of Wigner, like the
proton. Stable particles are representations characterized
by a real mass and have unitary group time evolutions.
Quasistable and resonance particles are semigroup rep-
resentations characterized by a complex mass and have
semigroup time evolutions. This time asymmetry on the
microphysical level is the most surprising and remarkable
property of relativistic Gamow vectors.
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